Abstract

A persistent feature of complex systems in engineering and science is the emergence of macroscopic, coarse grained, coherent behaviour from microscale interactions. In current modeling, ranging from ecology to materials science, the underlying microscopic mechanisms are known, but the closures to translate microscale knowledge to a large scale macroscopic description are rarely available in closed form. Kevrekidis proposes new 'equation free' computational methodologies to circumvent this stumbling block in multiscale modelling. Nonlinear coordinate transforms underpin analytic techniques that support these computational methodologies. But to do so we must cross multiple space and time scales, in both deterministic and stochastic systems, and where the microstructure is either smooth or detailed. Using examples, I describe progress in using nonlinear coordinate transforms to illuminate such multiscale modelling issues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.