Abstract

It has been shown in a previous paper that there is a real-valued transformation from the general N -degree-of-freedom second order system to a second order system characterized by diagonal matrices. An immediate extension of this fact is that for any second order system, there is a set of real-valued transformations (the structure-preserving transformations) which transform this system to a different second order system having identical characteristic behaviour. There are several possible reasons why it may be very useful to achieve a particular structure in the transformed system. It is obvious that a diagonal structure is extremely useful and a method has been devised for determining the diagonalizing transformation from the solution of the usual (complex) eigenvalue–eigenvector problem. This paper begins by outlining the usefulness of some other structures. Then it defines a class of elementary structure-preserving co-ordinate transformations that transform from one N -degree-of-freedom second order system to another. The term elementary is applied because any one of these transformations is the minimum-rank modification of the identity transformation. The changes occurring in the system matrices as a result of the application of one such elementary transformation transpire to be very simple in form, they are low rank, and they can be computed very efficiently. This paper provides the fundamental tools to enable the design of structure-preserving co-ordinate transformations which transform a second order system originally characterized by three general matrices in stages into a mathematically similar second order system characterized by three diagonal matrices. The procedure by which the individual elementary transformations are obtained is still under development and it is not discussed in this paper. However, an illustration is given of a five-degree-of-freedom self-adjoint system being transformed into tridiagonal form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call