Abstract

The coordinate transformation method (C method) is a powerful tool for modeling photonic structures with curved boundaries of discontinuities. As a modal method upon the Fourier basis, the C method has superior computational efficiency and rich physical intuitiveness compared to other full-wave numerical methods. But presently the C method is limited to two-dimensional (2D) structures if the boundaries between adjacent z-invariant layers are of generally different profiles [with (x,y,z) being the Cartesian coordinate]. Here we report a nontrivial extension of the C method to the general case of three-dimensional (3D) structures with curved boundaries of different profiles between adjacent layers. This extension drastically enlarges the applicability of the C method to the various interesting structures in nanophotonics and plasmonics. The extended 3D-C method adopts a hybrid coordinate transformation which includes not only the z-direction coordinate transformation in the classical C method but also the x- and y-direction matched coordinates adopted in the Fourier modal method (FMM), so as to exactly model the curved boundaries in all the three directions. The method also incorporates the perfectly matched layers (PMLs) for aperiodic structures and the adaptive spatial resolution (ASR) for enhancing the convergence. A modified numerically-stable scattering-matrix algorithm is proposed for solving the equations of boundary condition between adjacent z-invariant layers, which are derived via a transformation of the full 3D covariant field-components between the different curvilinear coordinate systems defined by the different-profile top and bottom boundaries of each layer. The validity of the extended 3D-C method is tested with several numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.