Abstract
Ethnopharmacological significanceIcariin (I), ferulic acid (F) and timosaponin B II (T) derived respectively from the leaf of Epimedium brevicornu Maxim (EBM, Berberidaceae), rhizome of Anemarrhena asphodeloides Bunge (AAB, Liliaceae) and root of Angelica sinensis (Oliv.) Diels (ASD, Umbelliferae) are included in several traditional Chinese medicine (TCM) formulas for the treatment of osteoporosis. In addition, the medicinal materials and chemical constituents in many traditional Chinese formulas have been shown to have potential synergistic, additive and antagonistic effects. Aim of studyTo explore the action mechanism and interactions between I, T and F as bone anabolic ingredients on osteoblasts, and fully understand their action mechanism and rationality of the formula design. Materials and methodsAn osteoporotic model was established in bilaterally ovariectomized mice. Bone mineral density (BMD), bone mineral content (BMC) and serum biochemical parameters including alkaline phosphatase (ALP), tartrate resistant acid phosphatase (TRAP), osteoprotegerin (OPG) and deoxypyridinoline cross-links (DPD) were measured to evaluate the effects of I, T or F alone and their combinations on osteoporotic mice. UMR-106 osteoblastic cells and primary osteoblasts in neonatal rat calvarias were used to evaluate the osteogenesis effect. The immunohistochemical method and Western-blot analysis were used to detect the expression of critical proteins in the process of proliferation and differentiation of osteoblasts. ResultsIFT combinations enhanced the therapeutic effect without increasing the adverse effects on osteoporotic mice, synergistically increased the osteoblast proliferation, ALP activity and mineralized nodule formation, and promoted the expression of bone matrix by regulating BMP and Wnt/β-catenin signaling pathways in osteoblasts. ConclusionIFT combinations reinforced the therapeutic effect on osteoporosis by modulating multi-signaling pathways and action targets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.