Abstract
The heparin-binding hemagglutinin (HBHA) is a multifunctional protein involved in adherence of Mycobacterium tuberculosis to non-phagocytic cells and in the formation of intracytosolic lipid inclusions. We demonstrate that the expression of hbhA is regulated by a transcriptional repressor, named HbhR, in Mycobacterium marinum. The hbhR gene, located upstream of hbhA, was identified by screening a transposon insertion library and detailed analysis of a mutant overproducing HBHA. HbhR was found to repress both hbhA and hbhR transcription by binding to the promoter regions of both genes. Complementation restored production of HBHA. RNA-seq analyses comparing the mutant and parental strains uncovered 27 genes, including hbhA, that were repressed and 20 genes activated by HbhR. Among the former, the entire locus of genes coding for a type-VII secretion system, including esxA, esxB and pe-ppe paralogs, as well as the gene coding for PspA, present in intracellular lipid vesicles, was identified, as was katG, a gene involved in the sensitivity to isoniazid. The latter category contains genes that play a role in diverse functions, such as metabolism and resistance to oxidative conditions. Thus, HbhR appears to be a master regulator, linking the transcriptional regulation of virulence, metabolic and antibiotic sensitivity genes in M. marinum.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.