Abstract
Cellular senescence is a complex stress response implicated in aging. Autophagy can suppress senescence but is counterintuitively necessary for full senescence. Although its anti-senescence role is well described, to what extent autophagy contributes to senescence establishment and the underlying mechanisms is poorly understood. Here, we show that selective autophagy of multiple regulatory components coordinates the homeostatic state of senescence. We combined a proteomic analysis of autophagy components with protein stability profiling, identifying autophagy substrate proteins involved in several senescence-related processes. Selective autophagy of KEAP1 promoted redox homeostasis during senescence. Furthermore, selective autophagy limited translational machinery components to ameliorate senescence-associated proteotoxic stress. Lastly, selective autophagy of TNIP1 enhanced senescence-associated inflammation. These selective autophagy networks appear to operate invivo senescence during human osteoarthritis. Our data highlight a caretaker role of autophagy in the stress support network of senescence through regulated protein stability and unravel the intertwined relationship between two important age-related processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.