Abstract

Since none of the hormones which activate adenylate cyclase in other tissues have been found to activate adenylate cyclase or to induce tyrosine aminotransferase in cultured Reuber hepatoma cells (H35), despite the stimulatory effects of cyclic AMP derivatives on the latter enzyme, we tested the ability of cholera toxin to influence these processes. At low concentrations cholera toxin was found to mimic the ability of cyclic AMP derivatives to selectively stimulate the synthesis of the aminotransferase. Adenylate cyclase and protein kinase activity were also enhanced, but only after a lag period as in other systems. Specific phosphorylation of endogenous H 1 histone was also shown to be increased by cholera toxin treatment. The increase in tyrosine aminotransferase activity is due to an increase in de novo synthesis as shown by radiolabeling experiments utilizing specific immunoprecipitation. The activity of another soluble enzyme induced by dibutyryl cyclic AMP, PEP carboxykinase, was also stimulated by exposure of H35 cells to cholera toxin. Combinations of cholera toxin and dexamethasone led to greater than additive increases in the activity of both the aminotransferase and carboxykinase. Close coupling of cyclic AMP production with protein kinase activation and enzyme induction was suggested by the observation that the ED 50 values for the stimulation of adenylate cyclase, cyclic AMP production, protein kinase, and tyrosine aminotransferase activities were found to be the same (5–7 ng/ml) within experimental error. The results indicate that the adenylate cyclase system in H35 cells is functionally responsive and they support the suggestion that activation of protein kinase is functionally linked to induction of specific enzymes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call