Abstract

Faster-than-Nyquist (FTN) signaling is an attractive transmission technique which accelerates data symbols beyond the Nyquist rate to improve the spectral efficiency; however, at the expense of higher computational complexity to remove the introduced intersymbol interference (ISI). In this work, we introduce a novel FTN signaling transmission technique, named coordinate interleaved FTN (CI-FTN) signaling that exploits the ISI at the transmitter to generate constructive interference for every pair of the counter-clockwise rotated binary phase shift keying (BPSK) data symbols. In particular, the proposed CI-FTN signaling interleaves the in-phase (I) and the quadrature (Q) components of the counter-clockwise rotated BPSK symbols to guarantee that every pair of consecutive symbols has the same sign, and hence, has constructive ISI. At the receiver, we propose a low-complexity detector that makes use of the constructive ISI introduced at the transmitter. Simulation results show the merits of the CI-FTN signaling and the proposed low-complexity detector compared to conventional Nyquist and FTN signaling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.