Abstract

Biosynthesis of nitric oxide (NO) and tetrahydrobiopterin (BH4) was investigated during cytokine-mediated activation of chicken macrophages. Monocyte derived macrophages and HD11 cells, a chicken macrophage cell line, constitutively synthesize BH4. Treatment of these cells with chicken macrophage activation factor (ChMAF) causes up to 10-fold increases of intracellular BH4 and of nitrite concentrations in the cell culture supernatant. Elevated BH4 levels correlate with an increase in GTP-cyclohydrolase I (GTP-CH) activity. Kinetic studies show a joint upregulation of GTP-CH activity and NO synthase activity first detectable 4 hr after stimulation. A corresponding increase in the mRNA for GTP-CH was detected by Northern blot analysis with a chicken GTP-CH specific cDNA probe. These results demonstrate that cytokine-induced BH4 synthesis by chicken macrophages is at least partially regulated through increased GTP-CH gene expression. The functional relevance of BH4 formation for NO production is shown by experiments using 2,4-diamino-6-hydroxypyrimidine (DAHP) as a specific inhibitor of GTP-CH. Monocyte derived macrophages stimulated in the presence of DAHP show a significant decrease in NO synthesis. The effect of DAHP was reversed by adding sepiapterin, which allows synthesis of BH4 through a salvage pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call