Abstract

The carbon storage regulator gene, csrA, encodes a factor which negatively modulates the expression of the glycogen biosynthetic gene glgC by enhancing the decay of its mRNA (M. Y. Liu, H. Yang, and T. Romeo, J. Bacteriol. 177:2663-2672, 1995). When endogenous glycogen levels in isogenic csrA+ and csrA::kanR strains were quantified during the growth curve, both the rate of glycogen accumulation during late exponential or early stationary phase and its subsequent rate of degradation were found to be greatly accelerated by the csrA::kanR mutation. The expression of the biosynthetic genes glgA (glycogen synthase) and glgS was observed to be negatively modulated via csrA. Thus, csrA is now known to control all of the known glycogen biosynthetic genes (glg), which are located in three different operons. Similarly, the expression of the degradative enzyme glycogen phosphorylase, which is encoded by glgY, was found to be negatively regulated via csrA in vivo. The in vitro transcription-translation of glgY was also specifically inhibited by the purified CsrA gene product. These results demonstrate that localization of glycogen biosynthetic and degradative genes within the Escherichia coli glgCAY operon facilitates their coordinate genetic regulation, as previously hypothesized (T. Romeo, A. Kumar, and J. Preiss, Gene 70:363-376, 1988). The csrA gene did not affect glycogen debranching enzyme, which is now shown to be encoded by the gene glgX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call