Abstract

The explicit forms of the metric as well as the equations of motion in the first-order post-Newtonian approximation are worked out under several gauge conditions. It is noted that the so-called EIH (Einstein, Infeld, and Hoffman) equation of motion for an assembly ofN finite mass points mutually interacting via gravitation is identically obtained under three different gauge conditions, namely the harmonic gauge, Chandrasekhar gauge and a composite Chandrasekhar gauge used by Misneret al. (1970), even though the solutions for the metric are found to be all different. In one case the metric has a component apparently diverging, but finally generates regular affine connections so that the equations of motions become free from any singularity. By use of the Chandrasekhar gauge and his formulation, the second-order contribution to the acceleration of planets in the limit of test particle motion around the Sun has been calculated, the inclusion of which in the EIH set of the equations of motion would extend the relative accuracy of computing the total acceleration of any planet to better than one part in 1017.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call