Abstract

Hibernation in mammals requires a metabolic shift away from the oxidation of carbohydrates and toward the combustion of stored fatty acids as the primary source of energy during torpor. A key element involved in this fuel selection is pyruvate dehydrogenase kinase isoenzyme 4 (PDK4). PDK4 inhibits pyruvate dehydrogenase and thus minimizes carbohydrate oxidation by preventing the flow of glycolytic products into the tricarboxylic acid cycle. This paper examines expression of the PDK4 gene during hibernation in heart, skeletal muscle, and white adipose tissue (WAT) of the 13-lined ground squirrel, Spermophilus tridecemlineatus. During hibernation PDK4 mRNA levels increase 5-fold in skeletal muscle and 15-fold in WAT compared with summer-active levels. Similarly, PDK4 protein is increased threefold in heart, fivefold in skeletal muscle, and eightfold in WAT. High levels of serum insulin, likely to have an inhibitory effect on PDK4 gene expression, are seen during fall when PDK4 mRNA levels are low. Coordinate upregulation of PDK4 in three distinct tissues suggests a common signal that regulates PDK4 expression and fuel selection during hibernation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.