Abstract

In recent years, as a semantic analysis and computational tool, ontology has been widely applied in many engineering applications. Many cases suggests that it’s confronted with countless big data source with the complex data structures. In order to relieve the dilemma, the sparse learning algorithms are introduced into the ontology similarity measuring and ontology mapping. In this setting, it should be a high dimensional expression of each ontology vertex, and the ontology algorithm should extract key component information effectively. Under such background, we consider the ontology sparse vector learning algorithm and application in different engineering applications. In this article, by means of coordinate descent minimization tricks, we present the ontology sparse vector optimization strategy and discuss the different transformation in different settings. At last, the new ontology sparse vector learning proceeding is applied to four engineering applications respectively to get its efficiency verified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.