Abstract

This paper defines mass, momentum, and energy densities for a perfect fluid, and derives a coordinate-dependent 3+1 decomposition of the equation of motion in terms of a scalar potentialψ ≡ c2 [(−gg44) 1/2 −1] and a vector potentialAi ≡cg4i/(−g44)1/2. The momentum equation has the form of the Euler equation except there is an additional force proportional to the vector potential and the rate of change of kinetic energy per unit volume. The momentum and energy equations are integrated to obtain the equations previously derived for a particle. The momentum equation is solved for the total acceleration of a fluid element. The equations are exact and do not depend on the choice of coordinate system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.