Abstract

In this paper instrumental methods of carbon dioxide (CO2) detection in biological material were compared. Using cis-[Cr(C2O4)(pm)(OH2)2]+ cation as a specific molecular biosensor and the stopped-flow technique the concentrations of CO2 released from the cell culture medium as one of final products of pyruvate decomposition caused by hydrogen peroxide were determined. To prove the usefulness of our method of CO2 assessment in the case of biological samples we investigated protective properties of exogenous pyruvate in cultured osteosarcoma 143B cells exposed to 1 mM hydrogen peroxide (H2O2) added directly to culture medium. Pyruvic acid is well known scavenger of H2O2 and, moreover, a molecule which is recognized as one of the major mediator of oxidative stress detected in many diseases and pathological situations like ischemia-reperfusion states. The pyruvate's antioxidant activity is described as its rapid reaction with H2O2, which causes nonenzymatic decarboxylation of pyruvate and releases of CO2, water and acetate as final products. In this work for the first time we have correlated the concentration of CO2 dissolved in culture medium with pyruvate's oxidant-scavenging abilities. Moreover, the kinetics of the reaction between aqueous solution of CO2 and coordinate ion, cis-[Cr(C2O4)(pm)(OH2)2]+ was analysed. The results obtained enabled determination of the number of steps of the reaction studied. Based on the kinetic equations, rate constants were determined for each step.

Highlights

  • Oxygen-derived free radical anion formed by mono, di- or trivalent reduction of molecular oxygen have been involved in many disease such as diabetes, hypertension, ischemia-reperfusion injury, neurodegenerative disorders, atherosclerosis and others [1,2,3,4]

  • The coordination compound of Cr(III) with as bidendate ligand - pyridoxamine turned out to be successfully applied in the case of the detection of CO2 generated in the reaction of decarboxylation of pyruvate caused by 1 mM H2O2

  • In this paper we described a new method of carbon dioxide detection in the physiological cell culture medium

Read more

Summary

Introduction

Oxygen-derived free radical anion formed by mono-, di- or trivalent reduction of molecular oxygen have been involved in many disease such as diabetes, hypertension, ischemia-reperfusion injury, neurodegenerative disorders, atherosclerosis and others [1,2,3,4]. The presence of reactive oxygen species (ROS) including: superoxide anion (O2·-), hydrogen peroxide (H2O2) and more potent oxidant hydroxyl radical (HO·) can lead to irreversible damages of cell's components - proteins, lipids and DNA [5,6,7]. H2O2 is considered as a one of the most important mediators of oxidative stress It can be produced intracellularly, especially by respiratory chain reaction and by extracellular oxidative burst mechanism used by activated inflammatory cells. Taking into consideration all those facts it seems that antioxidant properties of pyruvic acid (CH3COCOOH), which is recognised as compound involved in energy production can play an important protective role against the toxity of hydrogen peroxide [14,15,16]. The pyruvate can be considered as an endogenous, as well as a specific exogenous antioxidant since many types of cells including neurons release into plasma and serum where it can protect them against the acting of H2O2 [17]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.