Abstract

Skeletal muscle fibers are versatile entities, capable of changing their phenotype in response to altered functional demands. In the present study, fast-to-slow fiber type transitions were induced in rabbit tibialis anterior (fA) muscles by chronic low-frequency stimulation (CLFS). The time course of changes in relative protein concentrations of fast and slow myosin light chain (MLC) isoforms and changes in their relative synthesis rates by in vivo labeling with [35S]methionine were followed during stimulation periods of up to 60 days. Generally, relative synthesis rates and protein concentrations changed in parallel; i.e., fast isoforms decreased and slow isoforms increased. MLC3f, however, which turns over at a higher rate than the other light chains, exhibited a conspicuous discrepancy between a markedly reduced relative synthesis but only a moderate decrease in protein amount during the initial 2 weeks of CLFS. Apparently, MLC3f is regulated independent of MLC1f, with protein degradation playing an important role in its regulation. The exchange of fast MLC isoforms with their slow counterparts seemed to correspond to the ultimate fast-to-slow (MHCIIa-->MHCI) transition at the MHC level. However, due to an earlier onset of the fast-to-slow transition of the regulatory light chain and the delayed fast-to-slow exchange of the alkali light chains, a spectrum of hybrid isomyosins composed of fast and slow light and heavy chains must have existed transiently in transforming fibers. Such hybrid isomyosins appeared to be restricted to MHCIIa- and MHCI-based combinations. In conclusion, fiber type specific programs that normally coordinate the expression of myofibrillar protein isoforms seem to be maintained during fiber type transitions. Possible differences in post-transcriptional regulation may result in the transient accumulation of atypical combinations of fast and slow MLC and MHC isoforms, giving rise to the appearance of hybrid fibers under the conditions of forced fiber type conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call