Abstract

We consider the dynamics of coorbital motion of two small moons about a large planet which have nearly circular orbits with almost equal radii. These moons avoid collision because they switch orbits during each close encounter. We approach the problem as a perturbation of decoupled Kepler problems as in Poincare's periodic orbits of the first kind. The perturbation is large but only in a small region in the phase space. We discuss the relationship required among the small quantities (radial separation, mass, and minimum angular separation). Persistence of the orbits is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.