Abstract

Ground conductivity plays an important role both in the evaluation of the electromagnetic (EM) fields due to a lightning event and in the calculation of the line parameters, which are, in turn, fundamental in the analysis of the lightning-induced voltages on overhead lines. The exact formulation of the EM fields over a lossy ground involves the numerical evaluation of the Sommerfeld integrals, which are slowly converging and can only be computed in the frequency domain. For this reason, a great effort has been devoted in the derivation of approximate formulas that can provide accurate results with low computational costs. The most popular one is the Cooray-Rubinstein formula, which has been proposed in the frequency domain. Here, its time-domain counterpart is mathematically derived, and an efficient algorithm for its implementation is presented together with some comparisons with the exact approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.