Abstract

Initial attachment to a surface is a key and highly regulated step in biofilm formation. In this study, we present a platform for reversibly functionalizing bacterial cell surfaces with an emphasis on designing biofilms. We engineered the Lap system of Pseudomonas fluorescens Pf0-1, which is normally used to regulate initial cell surface attachment, to display various protein cargo at the bacterial cell surface and control extracellular release of the cargo in response to changing levels of the second messenger c-di-GMP. To accomplish this goal, we fused the protein cargo between the N-terminal retention module and C-terminal secretion signal of LapA and controlled surface localization of the cargo with natural signals known to stimulate or deplete c-di-GMP levels in P. fluorescens Pf0-1. We show this system can tolerate large cargo in excess of 500 amino acids, direct P. fluorescens Pf0-1 to surfaces it does not typically colonize, and program this microbe to sequester the toxic medal cadmium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.