Abstract

The effects of chemical modifications of myosin's reactive cysteines on actomyosin adenosine triphosphatase (ATPase) activities and sliding velocities in the in vitro motility assays were examined in this work. The three types of modifications studied were 4-[N-[(iodoacetoxy)ethyl]-N-methylamino]-7-nitrobenz-2-oxa-1,3- diazole labeling of SH2 (based on Ajtai and Burghart. 1989. Biochemistry. 28:2204-2210.), phenylmaleimide labeling of SH1, and phenylmaleimide labeling of myosin in myofibrils under rigor conditions. Each type of modified myosin inhibited the sliding of actin in motility assays. The sliding velocities of actin over copolymers of modified and unmodified myosins in the motility assay were slowest with rigor-modified myosin and most rapid with SH2-labeled myosin. The actin-activated ATPase activities of similarly copolymerized myosins were lowest with SH2-labeled myosin and highest with rigor-modified myosin. The actin-activated ATPase activities of myosin subfragment-1 obtained from these modified myosins decreased in the same linear manner with the fraction of modified heads. These results are interpreted using a model in which the sliding of actin filaments over myosin filaments decreases the probability of myosin activation by actin. The sliding velocity of actin over monomeric rigor-modified myosin exceeded that over the filamentous form, which suggests for this myosin that filament structure is important for the inhibition of actin sliding in motility assays. The fact that all cysteine modifications examined inhibited the actomyosin ATPase activities and sliding velocities of actin over myosin poses questions concerning the information about the activated crossbridge obtained from probes attached to SH1 or SH2 on myosin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.