Abstract

This work explores the efficacy of silica/organic hybrid catalysts, where the organic component is built from linear aminopolymers appended to the silica support within the support mesopores. Specifically, the role of molecular weight and polymer chain composition in amine-bearing atom transfer radical polymerization-synthesized poly(styrene-co-2-(4-vinylbenzyl)isoindoline-1,3-dione) copolymers is probed in the aldol condensation of 4-nitrobenzaldehyde and acetone. Controlled polymerization produces protected amine-containing poly(styrene) chains of controlled molecular weight and dispersity, and a grafting-to thiol-ene coupling approach followed by a phthalimide deprotection step are used to covalently tether and activate the polymer hybrid catalysts prior to the catalytic reactions. Site-normalized batch kinetics are used to assess the role of polymer molecular weight and chain composition in the cooperative catalysis. Lower-molecular-weight copolymers are demonstrated to be more active than catalysts built from only molecular organic components or from higher-molecular-weight chains. Molecular dynamics simulations are used to probe the role of polymer flexibility and morphology, whereby it is determined that higher-molecular-weight hybrid structures result in congested pores that inhibit active site cooperativity and the diffusivity of reagents, thus resulting in lower rates during the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call