Abstract
AbstractA cloud of cold N two‐level atoms driven by a resonant laser beam shows cooperative effects both in the scattered radiation field and in the radiation pressure force acting on the cloud center‐of‐mass. The induced dipoles synchronize and the scattered light presents superradiant and/or subradiant features. We present a quantum description of the process in terms of a master equation for the atomic density matrix in the scalar, Born‐Markov approximations, reduced to the single‐excitation limit. From a perturbative approach for weak incident field, we derive from the master equation the effective Hamiltonian, valid in the linear regime. We discuss the validity of the driven timed Dicke ansatz and of a partial wave expansion for different optical thicknesses and we give analytical expressions for the scattered intensity and the radiation pressure force on the center of mass. We also derive an expression for collective suppression of the atomic excitation and the scattered light by these correlated dipoles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.