Abstract

The complexes OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg (Rg = He, Ne, Ar, and Kr) have been studied by means of MP2 calculations and QTAIM analyses. The optimized geometries of the title complexes have C(6v) symmetry. The intermolecular interactions in the OCS···C(6)H(6)···Rg complexes are comparatively stronger than that in the OCS···C(6)H(6) complex, which prove that the He, Ne, Ar, and Kr atoms have the ability to form weak bonds with the benzene molecule. In QTAIM studies, the π-electron density of benzene was separated from the total electron density. The molecular graphs and topological parameters of the OCS···πC(6)H(6), πC(6)H(6)···Rg, and OCS···πC(6)H(6)···Rg complexes indicate that the interactions are mainly attributed to the electron density provided by the π-bonding electrons of benzene and the top regions of the S and Rg atoms. Charge transfer is observed from the benzene molecule to SCO/Rg in the formation of the OCS···C(6)H(6), C(6)H(6)···Rg, and OCS···C(6)H(6)···Rg complexes. Molecular electrostatic potential (MEP) analyses suggest that the electrostatic energy plays a pivotal role in these intermolecular interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.