Abstract

To fully understand the structural bases for the mechanisms of biological energy transduction, it is essential to determine the microscopic thermodynamic parameters which describe the properties of each centre involved in the reactions, as well as its interactions with the others. These interactions between centres can then be interpreted in the light of structural features of the proteins. Redox titrations of cytochrome c(3) from Desulfovibrio desulfuricans ATCC 27774 followed by NMR and visible spectroscopy were analysed by using an equilibrium thermodynamic model. The network of homotropic and heterotropic cooperativities results in the coupled transfer of electrons and protons under physiological conditions. The microscopic characterisation allows the identification of several pairs of centres for which there are clear conformational (non-Coulombic) contributions to their coupling energies, thus establishing the existence of localised redox- and acid-base-linked structural modifications in the protein (mechano-chemical coupling). The modulation of interactions between centres observed for this cytochrome may be an important general phenomenon and is discussed in the framework of its physiological function and of the current focus of energy transduction research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.