Abstract

Rationally designed peptide biosurfactant AM1 was mixed with sodium dodecyl benzene sulfonate (SDOBS) to self-assemble a mixed surfactant-biosurfactant layer at the air-water interface. Under optimal conditions in the presence of Zn2+, the interfacial elasticity of the mixed layer was approximately 5-fold higher than for biosurfactant alone. Two head positional isomers, SDOBS-2 and SDOBS-6, were compared for their ability to enhance interfacial film strength. SDOBS-6 forms a stronger layer with AM1 than does SDOBS-2. The highest interfacial elasticity of the AM1/SDOBS-6 layer was 640 mN m(-1) whereas the maximum value for the AM1/SDOBS-2 layer was 440 mN m(-1). Neutron reflection was used to investigate the structure of AM1/SDOBS films at varied bulk SDOBS concentrations. Both deuterated and nondeuterated SDOBS-2 and SDOBS-6 were used to provide contrast variation. It was shown that there is cooperative interaction between AM1 and SDOBS at low SDOBS concentration in the presence of 100 microM Zn2+, promoting AM1 adsorption atthe interface to form a two-layered structure of AM1 resulting in a mechanically strong interfacial film. In the presence of EDTA, only a single AM1 layer was formed at the same SDOBS concentration, and the film did not show lateral force transmission capability. Further increasing the SDOBS concentration to a molar excess of > 10x decreased the peptide population at the interface and resulted in a mechanically weak layer. Compared to SDOBS-6, SDOBS-2 depletes AM1 at a lower bulk concentration. These results demonstrate that the film strength of a self-assembled surfactant-biosurfactant mixed layer can be fine tuned by changing the isomer type and concentration of surfactant and by adding or removing metal ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call