Abstract
Random and undirected forces are rectified in biological and synthetic systems using ratcheting mechanisms, which employ periodic asymmetric potentials and nonequilibrium conditions to produce useful transport. The density of motors or transported particles is known to strongly affect the nature and efficacy of transport in biological systems, as well as in synthetic ratchets and active swimmer systems. While experimental ratchet implementations typically employ potentials varying in two dimensions (2D), the role of the density of interacting particles in such a system has not been modeled. Prompted by experimental observations and building upon previous simulations, this paper describes the ratcheting process of interacting particles in a 2D flashing ratchet, studied using classical simulations. Increased particle density is found to allow effective ratcheting at higher driving frequencies, compared to the low-density or non-interacting case. High densities also produce a new ratcheting mode at low drivi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.