Abstract

The problem of planning flight trajectories is studied for multiple unmanned combat aerial vehicles (UCAVs) performing a cooperated air-to-ground target attack (CA/GTA) mission. Several constraints including individual and cooperative constraints are modeled, and an objective function is constructed. Then, the cooperative trajectory planning problem is formulated as a cooperative trajectory optimal control problem (CTP-OCP). Moreover, in order to handle the temporal constraints, a notion of the virtual time based strategy is introduced. Afterwards, a planning algorithm based on the differential flatness theory and B-spline curves is developed to solve the CTP-OCP. Finally, the proposed approach is demonstrated using a typical CA/GTA mission scenario, and the simulation results show that the proposed approach is feasible and effective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.