Abstract
The emergence of connected and autonomous vehicles (CAVs) holds promise for fine-grained traffic control. However, due to the longevity of future mixed traffic scenarios, there is a need for an in-depth exploration of integrating the microscopic speed control of CAVs with the macroscopic variable speed limit (VSL) of human-driven vehicles (HDVs). This paper proposes a Cooperative Traffic Optimization with Multi-agent Reinforcement Learning and Evolutionary VSL (CTO-ME) framework, which combines microscopic CAV control with macroscopic VSL control. The framework incorporates a Graph Attention Mechanism (GATs) into the multi-agent reinforcement learning framework for intelligent decision-making by microscopic-level vehicles. Additionally, an evolutionary strategy is developed to design the VSL network architecture, enabling macroscopic level real-time speed limit adjustments based on infrastructure. A multi-objective reward function is proposed to optimize both micro and macro efficiency and safety, accounting for both vehicle behavior and traffic flow. Experiments on the designed Bottleneck traffic scenarios show that the proposed approach, CTO-ME, is able to achieve superior performance and outperforms other baselines in terms of traffic throughput, average speed, and safety. Specifically, CTO-ME enhances average velocity by 37%, increases overall throughput by 309%, and raises arrival ratio by 70% than traditional Intelligent Driver Model (IDM).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.