Abstract

This paper investigates the cooperative target enclosing of multiple unicycle-type mobile robots subject to input disturbances. The objective is to make all robots orbit around a given stationary target, and maintain evenly spaced along a common circle. The network of the multirobot systems is set in a cyclic pursuit manner. A dynamic control law is developed for the cooperative target enclosing of the multirobot systems, while tackling the heterogeneous input disturbances generated by linear exogenous systems. The proposed control law requires each robot to use the relative displacement measurements with respect to the target and its neighbors. It is shown that global asymptotic stability of the closed-loop multirobot systems can be guaranteed in the presence of a large class of input disturbance signals. Finally, simulation results illustrate the effectiveness of our approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call