Abstract
The application of cognitive radio (CR) technology to the Internet of Things (IoT) network can effectively solve the bottleneck problem of spectrum scarcity. As one of the key steps in CR-IoT, the research over spectrum sensing is of great importance. The utilization of the spectrum resource can be described by the power spectral density (PSD) which can be estimated by the IoT cognitive radio (CR) nodes cooperatively. The PSD-estimation induced error (PEIE) at each node can decrease the performance of spectrum sensing seriously, but it often be treated as Gaussian distribution easily in the published works which is not the fact in real systems. This paper tries to propose a general modeling method of PEIE to address this problem. After that, an optimization function is constructed over the PSD. Then the prior model which can lead to sparsity-inducing penalization terms is built by introducing two auxiliary parameters to take full advantage of the sparse property. Also, the variational Bayesian inference algorithm using the factor graph is used to find the iterative solution. Finally, compared with the traditional approach, the simulation results demonstrate the superior performance of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.