Abstract

This paper presents a multi-robot simultaneous localization and map building (SLAM) algorithm, suitable for environments which can be represented in terms of lines and segments. Linear features are described by adopting the recently introduced M-Space representation, which provides a unified framework for the parameterization of different kinds of features. The proposed solution to the cooperative SLAM problem is split into three phases. Initially, each robot solves the SLAM problem independently. When two robots meet, their local maps are merged together using robot-to-robot relative range and bearing measurements. Then, each robot starts over with the single-robot SLAM algorithm, by exploiting the merged map.The proposed map fusion technique is specifically tailored to the adopted feature representation, and takes into account explicitly the uncertainty affecting both the maps and the robot mutual measurements. Numerical simulations and experiments with a team composed of two robots performing SLAM in a real-world scenario, are presented to evaluate the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.