Abstract

Activation of a Si–H bond is commonly a critical step in catalytic hydrosilylation reactions. Herein, we investigate the cooperative reactivity of Ni(0) centers bearing a side-bound imine ligand toward silanes. Such complexes activate a Si–H bond of diphenylsilane, resulting in formal hydrosilylation of the imine backbone, which acts as a hydride acceptor. The resulting hydrosilazane motif engages either in coordination to nickel via the Si–H bond, forming an 18-electron η2-Si–H complex, or oxidative addition to Ni to form 16-electron Ni(II) silyl/hydride complexes. DFT calculations suggest a cooperative activation of the silane via ligand-to-ligand hydride transfer. In addition, the silicon fragment readily exchanges with external hydrosilanes, showing that the Si–N bond can be reversibly cleaved under mild conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.