Abstract

We present a class of cooperative sequential adsorption models on a Cayley tree with constant and variable attachment rates and their possible applications for ionic self-assembly of thin films and drug encapsulation of nanoparticles. Using the empty interval method, and generalizing results known from reaction–diffusion processes on Cayley trees, we calculate a variety of quantities such as time-dependent surface coverage and time-dependent probabilities of certain particle configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.