Abstract

This paper focuses on the problem of regional cooperative search using multiple unmanned aerial vehicles (UAVs) for targets that have the ability to perceive and evade. When UAVs search for moving targets in a mission area, the targets can perceive the positions and flight direction of UAVs within certain limits and take corresponding evasive actions, which makes the search more challenging than traditional search problems. To address this problem, we first define a detailed motion model for such targets and design various search information maps and their update methods to describe the environmental information based on the prediction of moving targets and the search results of UAVs. We then establish a multi-UAV search path planning optimization model based on the model predictive control, which includes various newly designed objective functions of search benefits and costs. We propose a priority-encoded improved genetic algorithm with a fine-adjustment mechanism to solve this model. The simulation results show that the proposed method can effectively improve the cooperative search efficiency, and more targets can be found at a much faster rate compared to traditional search methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call