Abstract
We study channel resolvability for the discrete memoryless multiple-access channel with cribbing, i.e., the characterization of the amount of randomness required at the inputs to approximately produce a chosen i.i.d. output distribution according to Kullback-Leibler divergence. We analyze resolvability rates when one encoder cribs (i) the input of the other encoder; or the output of the other encoder, (ii) non-causally, (iii) causally, or (iv) strictly-causally. For scenarios (i)-(iii), we exactly characterize the channel resolvability region. For (iv), we provide inner and outer bounds for the channel resolvability region; the crux of our achievability result is to handle the strict causality constraint with a block-Markov coding scheme in which dependencies across blocks are suitably hidden. Finally, we leverage the channel resolvability results to derive achievable secrecy rate regions for each of the cribbing scenarios under strong secrecy constraints.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.