Abstract

YedVW is one of the uncharacterized two-component systems (TCSs) of Escherichia coli. In order to identify the regulation targets of YedVW, we performed genomic SELEX (systematic evolution of ligands by exponential enrichment) screening using phosphorylated YedW and an E. coli DNA library, and identified YedW-binding sites within three intergenic spacers, yedW-hiuH, cyoA-ampG and cusR-cusC, along the E. coli genome. Using a reporter assay system, we found that transcription of hiuH, encoding 5-hydroxyisourate hydrolase, was induced at high concentrations of either Cu(2+) or H₂O₂. Cu(2+)-dependent expression of hiuH was observed in the yedWV knockout mutant, but was reduced markedly in the cusRS-null mutant. However, H₂O₂-induced hiuH expression was observed in the cusRS-null mutant, but not in the yedWV-null mutant. Gel mobility shift and DNase I footprinting analyses showed binding of both YedW and CusR to essentially the same sequence within the hiuH promoter region. Taken together, we concluded that YedVW and CusSR formed a unique cooperative TCS pair by recognizing and regulating the same targets, but under different environmental conditions - YedVW played a role in H₂O₂ response regulation, whilst CusSR played a role in Cu(2+) response regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call