Abstract

We demonstrate an information erasure protocol that resets N qubits at once. The method displays exceptional performances in terms of energy cost (it operates nearly at Landauer energy cost kTln⁡2), time duration (∼μs) and erasure success rate (∼99,9%). The method departs from the standard algorithmic cooling paradigm by exploiting cooperative effects associated to the mechanism of spontaneous symmetry breaking which are amplified by quantum tunnelling phenomena. Such cooperative quantum erasure protocol is experimentally demonstrated on a commercial quantum annealer and could be readily applied in next generation hybrid gate-based/quantum-annealing quantum computers, for fast, effective, and energy efficient initialisation of quantum processing units.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.