Abstract

Catalytic intermolecular olefin hydroamination is an enabling synthetic strategy that offers direct and atom-economical access to a variety of nitrogen-containing compounds from abundant feedstocks. However, despite numerous advances in catalyst design and reaction development, hydroamination of N-H azoles with unactivated olefins remains an unsolved problem in synthesis. We report a dual phosphine and photoredox catalytic protocol for the hydroamination of numerous structurally diverse and medicinally relevant N-H azoles with unactivated olefins. Hydroamination proceeds with high anti-Markovnikov regioselectivity and N-site selectivity. The mild conditions and high functional group tolerance of the reaction permit the rapid construction of molecular complexity and late-stage functionalization of bioactive compounds. N-H bond activation is proposed to proceed via polar addition of the N-H azole to a phosphine radical cation, followed by P-N α-scission from a phosphoranyl radical intermediate. Reactivity and N-site selectivity are classified by azole N-H BDFE and nitrogen-centered radical spin density, respectively, which can serve as a useful predictive aid in extending the reaction to unseen azoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.