Abstract

Occlusion is a critical problem in the Autonomous Driving System. Solving this problem requires robust collaboration among autonomous vehicles traveling on the same roads. However, transferring the entirety of raw sensors' data among autonomous vehicles is expensive and can cause a delay in communication. This paper proposes a method called Realtime Collaborative Vehicular Communication based on Bird's-Eye-View (BEV) map. The BEV map holds the accurate depth information from the point cloud image while its 2D representation enables the method to use a novel and well-trained image-based backbone network. Most importantly, we encode the object detection results into the BEV representation to reduce the volume of data transmission and make real-time collaboration between autonomous vehicles possible. The output of this process, the BEV map, can also be used as direct input to most route planning modules. Numerical results show that this novel method can increase the accuracy of object detection by cross-verifying the results from multiple points of view. Thus, in the process, this new method also reduces the object detection challenges that stem from occlusion and partial occlusion. Additionally, different from many existing methods, this new method significantly reduces the data needed for transfer between vehicles, achieving a speed of 21.92 Hz for both the object detection process and the data transmission process, which is sufficiently fast for a real-time system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.