Abstract
This paper investigates the cooperative optimal guidance of hypersonic glide vehicles (HGVs) in the terminal phase with consideration on time-varying velocity, aerodynamic forces, and practical constraints. The cooperative optimal guidance problem is formulated as an optimal control problem with time as the independent variable, which brings great convenience in controlling the impact time. We propose proper convexification techniques to convexify this problem and apply successive convex optimization to get the solution of the original problem. To achieve cooperative guidance of multiple HGVs with time coordination constraint, a deep learning–based approach is proposed to find an optimal common impact time assigned to all the HGVs. The training samples required by deep learning are obtained by convex optimization. An algorithm is then presented to summarize the cooperative optimal guidance strategy. In each guidance loop, the common impact time is updated according to mission conditions, and the guidance commands are generated by the successive solution procedure in real time. Numerical examples will be provided to demonstrate that the proposed cooperative optimal guidance algorithm is effective and efficient, and it can achieve better performance than a popular cooperative proportional navigation guidance law.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.