Abstract
In this paper, a cooperative adaptive control of leader-following uncertain nonlinear multiagent systems is proposed. The communication network is weighted undirected graph with fixed topology. The uncertain nonlinear model for each agent is a higher-order integrator with unknown nonlinear functions, unknown disturbances and unknown input actuators. Meanwhile, the gains of input actuators are unknown nonlinear functions with unknown sign. Two most common behaviors of input actuators in practical applications are hysteresis and dead-zone. In this paper, backlash-like hysteresis and dead-zone are used to model the input actuators. Using universal approximation theorem proved for neural networks, the unknown nonlinear functions are tackled. The unknown weights of neural networks are derived by proposing appropriate adaptive laws. To cope with modeling errors and disturbances an adaptive robust structure is proposed. Considering Lyapunov synthesis approach not only all the adaptive laws are derived but also it is proved that the closed-loop network is cooperatively semi-globally uniformly ultimately bounded (CSUUB). In order to investigate the effectiveness of the proposed method, it is applied to agents modeled with highly nonlinear mathematical equations and inverted pendulums. Simulation results demonstrate the effectiveness and applicability of the proposed method in dealing with both numerical and practical multi-agent systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.