Abstract

The first tail-to-tail dimerization of methacrylonitrile (MAN) has been realized by the cooperative use of N-heterocyclic carbene (NHC) and Brønsted acid catalysts, producing 2,5-dimethylhex-2-enedinitrile with the E/Z ratio of 24:76. Although the NHC alone was not effective for the catalysis, the addition of alcohols resulted in the significant increase of the dimer yield up to 82% in the presence of 5 mol % NHC. Detailed experimental studies including the ESI-MS analysis of the intermediates, stoichiometric (co)dimerizations, and deuterium-labeling experiments revealed the mechanistic aspects of the proton transfer, isomerization, umpolung, and rate-limiting steps, allowing us to observe several mechanistic differences between the dimerization of MAN and that of methyl methacrylate. The stoichiometric reactions in the presence and absence of an alcohol suggest that the alcohol additives play a role in promoting the intermolecular proton transfers from the deoxy-Breslow intermediate to the regenerated NHC in the second half of the catalytic cycle. In addition, the codimerizations of MAN with n-butyl methacrylate (n-BuMA) have been studied. While the dimerization of n-BuMA was sluggish in the presence of an alcohol, the catalytic activity for the codimerization was enhanced by the cooperative systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.