Abstract

When solving large-scale multiobjective optimization problems, solvers can get stuck because of memory and/or time limitations. In such cases, one is left with no information on the distance to the best feasible solution, found before the optimization process has stopped, to the true Pareto optimal solution. In this work, we show how to provide such information. To this aim we make use of the concept of lower shells and upper shells, developed in our earlier works. No specific assumptions about the problems to be solved are made. We illustrate the proposed approach on biobjective multidimensional knapsack problems derived from single-objective multidimensional knapsack problems in the Beasley OR Library. We address cases when a top-class commercial mixed-integer linear solver fails to provide Pareto optimal solutions attempted to be derived by scalarization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.