Abstract

In this work, a multicell cooperative zero-forcing beamforming (ZFBF) scheme combined with a simple user selection procedure is considered for the Wyner cellular downlink channel. The approach is to transmit to the user with the ldquobestrdquo local channel in each cell. The performance of this suboptimal scheme is investigated in terms of the conventional sum-rate scaling law and the sum-rate offset for an increasing number of users per cell. We term this characterization of the sum-rate for large number of users as high-load regime characterization, and point out the similarity of this approach to the standard affine approximation used in the high-signal-to-noise ratio (SNR) regime. It is shown that, under an overall power constraint, the suboptimal cooperative multicell ZFBF scheme achieves the same sum-rate growth rate and slightly degraded offset law, when compared to an optimal scheme deploying joint multicell dirty-paper coding (DPC), asymptotically with the number of users per cell. Moreover, the overall power constraint is shown to ensure in probability, equal per-cell power constraints when the number of users per-cell increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.