Abstract

The structural and dynamical properties of suspensions of self-propelled Brownian particles of spherical shape are investigated in three spatial dimensions. Our simulations reveal a phase separation into a dilute and a dense phase, above a certain density and strength of self-propulsion. The packing fraction of the dense phase approaches random close packing at high activity, yet the system remains fluid. Although no alignment mechanism exists in this model, we find long-lived cooperative motion of particles in the dense regime. This behavior is probably due to an interface-induced sorting process. Spatial displacement correlation functions are nearly scale free for systems with densities close to or above the glass transition density of passive systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call