Abstract

The cooperative motion induced structural evolution of the liquid with microheterogeneity is investigated in quasi-2D dusty plasma liquids, through direct optical visualization. A novel bond-dynamics analysis is used to further classify the robust cooperative 2D clusters into static, rotating, and drifting patches, beyond the earlier findings of the cooperative hopping strings and bands. The relative motion between two adjacent clusters causes the formation of a fractal network with narrow shear strips along the cluster interface. The rotation of the large ordered patch through rupturing into multiple rotating patches followed by the healing process, and the growth to a larger ordered patch by aligning the different lattice orientations of the adjacent ordered domains through patch rupturing, rotation, drifting, and merging are the key processes for the microstructural evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call