Abstract

RAS network activation is common in human cancers and, in acute myeloid leukemia (AML), achieved mainly through gain-of-function mutations in KRAS, NRAS, or the FLT3 receptor tyrosine kinase1. In mice, we show that premalignant myeloid cells harboring a KrasG12D allele retain low Ras signaling owing to a negative feedback involving Spry4 that prevents transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletion that are associated with an aggressive disease in which gain-of-function RAS pathway mutations are rare. These 5q deletions often co-occur with chromosome 17 alterations involving deletion of NF1 - another RAS negative regulator - and TP53. Accordingly, combined suppression of Spry4, Nf1 and Trp53 produces high Ras signaling and drives AML in mice. Therefore, SPRY4 is a 5q tumor suppressor whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through loss of negative regulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call