Abstract

This work considers quantize–forward (QF) relay channels with <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$M$</tex-math></inline-formula> -ary phase shift keying at the source and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$q$</tex-math></inline-formula> -bit uniform phase quantization at the relay. A cooperative linear combining (CLC) detection which linearly combines the received signals at the destination is proposed in the QF relay channel by deriving an equivalent signal-to-noise ratio for the source-relay-destination link. Furthermore, the proposed detection is simplified by approximating <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$Q$</tex-math></inline-formula> function in two directions: small <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$q$</tex-math></inline-formula> and large <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$q$</tex-math></inline-formula> . The CLC detection and its simplified version are also extended to multi-relay channels. Simulation results verify that the CLC and simplified CLC detections achieve reasonable performance with less complexity than the maximum-likelihood detection. It demonstrates that applying <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$(\log _{2} M+2)$</tex-math></inline-formula> -bit uniform phase quantization at the relay and the simplified CLC detection at the destination can be an appropriate choice in terms of performance, complexity, and memory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.