Abstract
Cooperative learning is a pedagogical approach in which students collaborate in small groups to attain a shared academic objective. In the classroom, cooperative learning aims to enhance learning outcomes by promoting the exchange of information, social, and personal resources among students. Group formation is a critical and complex step that significantly impacts the effectiveness of cooperative learning. In this article, we propose a novel approach for constructing cooperative learning groups that employs machine learning to predict student performance and incorporates the most common grouping strategies to recommend optimal group formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Online and Biomedical Engineering (iJOE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.