Abstract

The equilibrium nucleotide binding and oligomerization of bacteriophage T7 gene 4 helicases have been investigated using thymidine 5'-triphosphate (dTTP), deoxythymidine 5'-(beta, gamma-methylenetriphosphate)(dTMP-PCP), thymidine 5'-diphosphate (dTDP), adenosine 5'-triphosphate (ATP), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S). In the presence of nucleotide ligands, T7 helicases self-assemble into hexamers with six potential nucleotide binding sites that are nonequivalent both in the absence and in the presence of single-stranded DNA. All nucleotides tested bind with high affinity to three sites (K(d) = 5 x 10(-6) M, dTTP; 6 x 10(-7) M, dTMP-PCP; 4 x 10(-6) M, dTDP; 3 x 10(-5) M, ATP; 2 x 10(-6) M, ATP gamma S), while binding to the remaining sites is undetectable. Interestingly, nucleotide binding to the high-affinity sites exhibits positive cooperativity which is sensitive to protein concentration. This effect is a result of ligand binding-linked oligomerization wherein helicase oligomer equilibrium changes as a function of both nucleotide and protein concentration. A study of DNA binding shows that 1-2 NTPs bound per hexamer are sufficient for stoichiometric interaction between the helicase and DNA. Thus, the ring-shaped helicase hexamers assemble around DNA with one, two, or three NTPs bound to each hexamer. This study also examines the preferred use of dTTP for T7 helicase-catalyzed DNA unwinding by comparison with ATP, the more commonly used nucleotide ligand. ATP binds to the helicase with 6-fold weaker affinity than dTTP and promotes hexamerization as well as DNA binding. Nevertheless, DNA unwinding with ATP is at least 100-fold slower than with dTTP. Thus, the difference in ATP and dTTP utilization probably lies in a highly specific step in the coupling of NTP hydrolysis to DNA unwinding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.